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Infrared spectroscopy based on sensitive wavelengths (SWs) and chemometrics was proposed to
discriminate the nine different radiation doses (0, 250, 500, 750, 1000, 1500, 2000, 2500, and 3000
Gy) of rice. Samples (n ) 16 each dose) were selected randomly for the calibration set, and the
remaining 36 samples (n ) 4 each dose) were selected for the prediction set. Partial least-squares
(PLS) analysis and least-squares-support vector machine (LS-SVM) were implemented for calibration
models. PLS analysis was implemented for calibration models with different wavelength bands
including near-infrared (NIR) regions and mid-infrared (MIR) regions. The best PLS models were
achieved in the MIR (400–4000 cm-1) region. Furthermore, different latent variables (5-9 LVs) were
used as inputs of LS-SVM to develop the LV-LS-SVM models with a grid search technique and radial
basis function (RBF) kernel. The optimal models were achieved with six LVs, and they outperformed
PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs
based on loading weights. The optimal LS-SVM model was achieved with SWs (756, 895, 1140, and
2980 cm-1) selected by ICA and had better performance than PLS and LV-LS-SVM with the
parameters of correlation coefficient (r), root-mean-square error of prediction, and bias of 0.996, 80.260,
and 5.172 × 10-4, respectively. The overall results indicted that the ICA was an effective way for the
selection of SWs, and infrared spectroscopy combined with LS-SVM models had the capability to
predict the different radiation doses of rice.
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INTRODUCTION

Cereal grains contribute to over 60% of the total world food
production. Cereals are predominantly composed of carbohy-
drates, mostly in the form of starch, with a considerable amount
of protein as well as some lipids, vitamins, and minerals (1).
Rice in China is grown mostly in the south Chin Mountains
and Huai River, especially in the Changjiang River and Zhujiang
River areas. The plant area of rice is one-quarter of all the grain,
and the output is half of the total in grain. So, rice is a staple
food, and the concerns about rice are much greater than those
for other foods. However, investigations have revealed that rice
would be affected by mold damage and insect damage during
postharvest storage. This extensive loss of rice has stimulated
a great deal of research on minimizing these damages, such as
spraying insecticides consisting of pyrethrins and malathion or
fumigating rice with methyl bromide, ethylene oxide, and
hydrogen cyanide. However, safety about the consumption of
rice contaminated with insecticides and fumigating chemicals
in humans is concerning.

γ-Radiation treatment has been applied in grain storage for
the control of insect infestation, microbial contamination, or the
prevention of postharvested biological activities, for example,
ripening, germination, and sprouting, with the merits of
simplifying the whole treatment process, minimizing the
processing time, leaving no detrimental residue, and achieving
this for a reasonable radiation cost. Radiation-treated grain may
lead to different changes in nutritional contents depending on
the different radiation doses. Generally, whether the grain is
radiated cannot be told by obvious appearance indications.
Methods employing techniques that include gas chromatography,
mass spectrometry, spectroscopy, and DNA analysis may be
applied to identify certain molecular and spectroscopic char-
acteristics of rice that are altered as a result of radiation. There
have been no literature works using infrared spectroscopy to
analyze the different radiation doses of rice; also, the use of
mid-infrared spectroscopy (MIRS) in cereal applications has
been less.

Infrared spectroscopy techniques, such as near-infrared
spectroscopy (NIRS) and MIRS, have been widely applied as
nondestructive analytical methods with the advantages of quick
analysis, small sample preparation, and low cost. Although
infrared spectroscopy techniques cannot always provide defini-
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tive compositional information about a food sample, they can
often provide a means of screening food products for qualitative
attributes without the involvement of time-consuming chemistry
analyses in laboratories (2). Osborne et al. used NIRS for the
authentication of Basmati rice (3). Delwiche and Graybosch built
the identification model of waxy wheat using near-infrared
reflectance spectroscopy (4). Wu et al. estimated the amino acid
composition in the milled rice powder by near-infrared reflec-
tance spectroscopy (5). Kim et al. attempted to use NIRS to
authenticate Korean domestic and foreign rices (6). Wu and Shi
studied the composition of single rice grains using near-infrared
reflectance spectroscopy (7). Baye et al. used single kernel
infrared spectroscopy to predict the maize seed composition (1).

The NIRS bands mainly corresponding to C-H, O-H, and
N-H vibrations are originally from fundamental bands in MIR
region. These bands are not directly visible since they are more
severely superimposed than in the MIR spectra, resulting in low
molar absorptivity of NIRS. In contrast, the MIRS bands have
high molar absorptivity, and the peaks of MIRS are specific,
sharp, and sensitive (2). MIRS are applied to detect composi-
tional differences between samples on the basis of vibrations
of various chemical groups at specific wavelengths. However,
spectral reproducibility of MIRS, including the signal-to-noise
ratio, is poorer as compared to NIRS (8). Thus, two techniques

have independent advantages and disadvantages and need to
be considered according to different situations.

The objectives of this paper were (i) to study the feasibility
of using infrared spectroscopy to predict the different radiation
doses of rice; (ii) to compare the performance of different
wavelength bands including the NIR region (1100–2500 nm)
and the MIR region (400–4000 cm-1) by partial least-squares
(PLS) analysis; (iii) to compare the prediction precision using

Figure 1. Original near-infrared spectral curves of radiated rice after nine different radiation doses.

Figure 2. Near-infrared spectral curves of radiated rice after second derivative preprocessing.

Figure 3. Mid-infrared spectral curves of radiated rice after nine different
radiation doses.
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different latent variables (5-9 LVs) for least-squares-support
vector machine (LS-SVM); and (iv) to select the optimal
sensitive wavelengths (SWs) for the development of portable
instruments and online monitoring for commercial applications
of different radiated doses of rice.

MATERIALS AND METHODS

Rice Samples. The origins of the rice samples were unpolished (a
unique rice type), and they were polished before they were radiated
with γ-radiation. The treatment was performed in a 60Co irradiator at
Zhejiang University with a dosage rate of 2.5 kGy/h, and nine different
radiation doses dealt with the following doses: 0, 250, 500, 750, 1000,
1500, 2000, 2500, and 3000 Gy. After radiation, a total 180 rice samples
were prepared as rice flours by milling using a flour mill, with 20
samples from each radiation dose; all flours were passed through a
100 mesh sieve. All samples were divided into calibration sets of 144
samples (16 samples for each dose) and prediction sets of 36 samples
(four samples for each dose). No single sample was used in calibration
and prediction sets at the same time. To compare the performance of
different calibration models, the samples in the calibration and
prediction sets were kept unchanged for all calibration models.

Spectral Acquisition and Preprocessing. Two spectrometers were
used to measure the rice samples: a Foss NIRSystems 6500 (NIRSys-
tems, Inc., Silver Spring, MD), with a spectral range of 1100–2500
nm, and a FT-IR spectrometer (FT/IR-4100 type A FT-IR Spectrometer,
JASCO International Co., Ltd., Japan), with a spectral range of
7800–350 cm-1. In NIR measurements, about 4 g of rice flour for each
sample was scanned in duplicate in a small ring cup (NR-7073; internal
diameter, 35 mm; depth, 9 mm). Each spectrum represented the average
of 32 scans and was recorded as log (1/R) at 2 nm increments. For
MIR measurements, each sample was mixed with potassium bromide
(KBr) at a ratio of 1:49, and then, the mixture was compressed into
slices and loaded on a slide holder. The spectral curves were obtained
in transmission mode. Duplicates of each sample were scanned twice
(rotating the ring cup to a different position). The average spectrum of
each sample was used for further analysis.

Before the calibration stage, both NIR and MIR spectra data were
preprocessed. The Savitzky-Golay smoothing was used to reduce the
noise (9, 10), with a window width of 7 (3–1–3) points. The mul-
tiplicative scatter correction (MSC) was used to correct additive and
multiplicative effects in the spectra (11). To analyze the influence of
different radiation doses on rice, the internal quality parameters of
radiated rice were used, including starch and protein.

Partial Least Squares Analysis. In the development of the PLS
model, calibration models were built between the spectra and the
radiation doses; full cross-validation was used to evaluate the quality
and to prevent overfitting of the calibration models. The optimal number
of LVs was determined by the lowest value of predicted residual error
sum of squares (PRESS). The prediction performance was evaluated
by the correlation coefficient (r) and root-mean-square error of
calibration (RMSEC) or prediction (RMSEP). The ideal model should
have a higher r value and lower RMSEC and RMSEP values. The
prediction set was applied to evaluate the accuracy of the models to
classify rice samples according to different doses.

Independent Component Analysis (ICA). ICA was originally
developed to deal with problems closely related to the cocktail party
problem (12). As an effective approach to the separation of blind signals,
ICA has recently attracted broad attention and has been successfully
used in many fields, for example, medical signal analysis, image
processing, dimension reduction, fault detection, and near-infrared
spectral data analysis (13–18).

ICA is a well-established statistical signal processing technique that
aims to decompose a set of multivariate signals into a base of
statistically independent components with minimal loss of information
content. The independent components are LVs, meaning that they
cannot be directly observed, and the independent component must have
non-Gaussian distributions. A chief explanation of noise-free ICA model
could be written as the following expression:

x)As (1)

where x denotes the recorded data matrix and s and A represent the
independent components and the coefficient matrix, respectively. The
goal of ICA is to find a proper linear representation of non-Gaussian
vectors so that the estimated vectors are as independent as possible
and the mixed signals can be denoted by the linear combinations of
these independent components. The ICs were obtained by a high-order
statistic, which is a much stronger condition than orthogonality. This
goal is equivalent to finding a separating matrix W that satisfies

s ) WX (2)

where ŝ is the estimation of s.
The separating matrix W can be trained as the weight matrix of a

two-layer feed-forward neural network in which x is the input and ŝ is
the output.

There are lots of algorithms for performing ICA (19, 20). Among
these algorithms, the fast fixed-point algorithm (FastICA) is highly
efficient for performing the estimation of ICA, which was developed
by Hyvärinen and Oja (21).

FastICA was chosen for ICA and carried out in Matlab 7.0 (The
Math Works, Natick, United States) according to the following steps
(16):

(1) Choose an initial random weight vector w (0) and let k ) 1,
where w is an l-dimensional (weight) vector in the weight matrix
W, and k is an irrelevant constant.

(2) Let w(k) ) E{xg[w(k - 1)T x]} - E{g′[w(k - 1)T x]}w(k - 1),
where g is the first derivative of the function G, and G is
practically any nonquadratic function.

(3) Let w(k) ) w(k)/|w(k)|.
(4) If |w(k)T w(k -1)| is not close enough to 1, let k ) k + 1 and go

back to step 2. Otherwise, output the vector w (k).

LS-SVM. LS-SVM can work with linear or nonlinear regression or
multivariate function estimations in a relatively fast way (22–24). It
uses a linear set of equations instead of a quadratic programming (QP)
problem to obtain the support vectors (SVs). The details of the LS-
SVM algorithm can be found in the literature (25, 26). The LS-SVM
model can be expressed as:

y(x) ) ∑
k)1

N

RkK(x, xk)+ b (3)

where K(x, xi) is the kernel function, xi is the input vector, Ri is a
Lagrange multiplier called the support value, and b is the bias term.

In the model development using LS-SVM and the radial basis
function (RBF) kernel, the optimal combination of gam(γ) and sig2(σ2)
parameters was selected when resulting in smaller root-mean-square
errors of cross-validation (RMSECV). In this study, gam(γ) was

Table 1. Prediction Results of Different Wavelength Regions by PLS Models

data set region LVs correlation coefficients RMSEC (RMSEP) bias slope offset

calibration NIR 7 0.976 116.428 5.631 × 10-2 0.953 65.346
MIR 6 0.985 97.125 2.507 × 10-3 0.970 56.412

prediction NIR 7 0.964 122.308 8.340 × 10-2 0.929 68.124
MIR 6 0.978 114.902 -6.032 × 10-3 0.956 58.302

Table 2. Explained Variance of LVs in the MIR Region

parameters

LVs 5 6 7 8 9
EVa (%) 89.203 95.120 96.245 97.862 98.493

a EV, explained variance.
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optimized in the range of 2-1–210 and 2–215 for sig2(σ2) with adequate
increments. These ranges were chosen from previous studies where
the magnitude of parameters was optimized. The grid search had two
steps: The first step was for a crude search with a large step size, and
the second step was for the specified search with a small step size.
The free LS-SVM toolbox (LS-SVM v 1.5, Suykens, Leuven, Belgium)
was applied with MATLAB 7.0 to develop the calibration models.

RESULTS AND DISCUSSION

Features of Spectra and Statistics of Starch and Protein.
Figure 1 shows the NIR spectral curves of radiated rice with
nine different radiation doses. The range of starch was
20.963-24.124, and protein was 7.669-7.303, verified with
different radiation doses. The trend of different doses in NIR
region is similar, so we treated them with a second derivative
(Figure 2). The prominent features are that the absorption
peaks were associated with the first overtone of C-H
stretching of the starch around 1131–1155 nm, the first
overtone of O-H symmetric and asymmetric stretching of
water around 1418 nm, the first overtone of the C-H
asymmetric stretching of lipid around 1681 nm, and the O-H
bending and asymmetric stretching combination band of water
around 1852–1906 nm (27). As compared to the NIR region,
the curves are complex in the MIR region (Figure 3). The
MIR range covered two large water bands, ν2 and νL, centered
around 1640 and 750 cm-1, the amide band I around
1558–1705 cm-1, the amide bands II around 1480–1613
cm-1, and the amide bands III around 1200–1280 cm-1, and
the phosphate groups covalently bind to casein proteins
around 1060–1100 cm-1. There also exist some peaks around
3000, 1480, 1150, and 900 cm-1. In both NIR and MIR
regions, the spectral curves did not show an obvious rule,
and a calibration procedure was required to analyze the
properties of radiated rice using sophisticated statistical

techniques.
PLS Models. A PLS model was developed using the

preprocessed spectra data by Savitzky-Golay smoothing and
MSC, and calibration models were built between the spectra
and the different radiation doses. Considering the spectroscopy
categories related to the wavelength bands, the NIR region
(1100–2500 nm) and MIR region (400–4000 cm-1) were
separated to establish two models. Different LVs were applied
to build the calibration models, and no outliers were detected
in the calibration set during the development of PLS models.
The results of calibration and prediction sets are shown in Table
1. The models built with MIR region 400–4000 cm-1 turned
out to be the best for the prediction of different radiated doses.
The r, RMSEP, and bias for the MIR model were 0.978,
114.902, and -6.032 × 10-3, respectively. The original spectral
transmission plots (Figures 1 and 2) show that a high amount
of absorption bands is present in NIR spectra, but it is not
directly visible since bands are more severely superimposed than
in the MIR spectra. In the MIRS region, the curves are smoother,
and there are great differences among each dose sample because
the MIRS provide more information about frequencies and
intensities, which are stronger, than NIRS does (8). Chemo-
metrics techniques such as LV-LS-SVM and SW-LS-SVM from
ICA were used to separate useful information from irrelevant
contributions. The result based on the MIR region is better than
NIR, even if calibration models with NIR could lead to less
satisfactory results; however, their use could be preferable, due
to the easier sample preparation in NIR spectroscopy than in
MIR spectroscopy.

LV-LS-SVM Models. LVs obtained from PLS were applied
as inputs of LS-SVM models to improve the training speed and
reduce the training error of the MIR model because the training
time increased with the square of the number of training samples
and linearly with the number of variables. From the aforementioned
analysis of the performance of PLS models, the LVs from the MIR
region were used as new eigenvectors to enhance the features of
spectra and reduce the dimensionality of the spectra data matrix.
Several LVs were extracted from the spectra of 180 samples. Table
2 shows the explained variance of Y (different radiation dose) of
the first 5-9 LVs. The variance of the first five LVs could explain
more than 89% of the total variance, and the ninth LV only
interpreted an additional 0.631%, which contributed not so much
as the other aforementioned LVs. So, it was not necessary for the
consideration of less than five LVs or more than nine LVs. The
LS-SVM models with 5-9 LVs were developed separately to find
the best number of LVs.

Before the LS-SVM calibration model can be built, three steps
are crucial for the optimal input feature subset, proper kernel
function, and the optimal kernel parameters. First, the 5-9 LVs
obtained from PLS analysis must be used as the input data set.
Second, RBF could handle the nonlinear relationships between
the spectra and the target attributes. Finally, two important

Table 3. Prediction Results of Different Radiation Dose with Different LVs by LV-LS-SVM Models in the MIR Region

data set LVs (γ, σ2) correlation coefficients RMSEC (RMSEP) bias slope offset

calibration 5 (42.1, 12.4) 0.986 98.635 -1.145 × 10-3 0.972 56.075
6 (116.6, 24.6) 0.992 88.421 8.125 × 10-4 0.984 50.467
7 (54.5, 27.8) 0.984 101.427 4.204 × 10-3 0.968 55.346
8 (188.7, 21.8) 0.979 108.604 8.456 × 10-3 0.958 58.024
9 (254.9, 20.4) 0.972 112.410 5.301 × 10-2 0.945 58.697

prediction 5 (42.1, 12.4) 0.978 109.127 -5.064 × 10-3 0.956 58.945
6 (116.6, 24.6) 0.989 95.763 -3.621 × 10-3 0.978 54.568
7 (54.5, 27.8) 0.975 111.408 -7.042 × 10-2 0.951 60.042
8 (188.7, 21.8) 0.969 117.042 8.362 × 10-2 0.939 61.347
9 (254.9, 20.4) 0.964 121.487 -9.139 × 10-2 0.929 61.842

Figure 4. Predicted vs reference values for different radiated doses of
rice by LV-LS-SVM models in the mid-infrared region.
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parameters gam(γ) and sig2(σ2) should be optimal for RBF
kernel function as aforementioned in multivariate analysis.

The performance of these MIR models was evaluated by 36
samples in the prediction set, and the results are shown in Table
3. With a comparison of the results for calibration and prediction
sets, the best performance was achieved with six LVs. The r,
RMSEP, and bias for prediction sets were 0.989, 95.763, and
-3.621 × 10-3, respectively. The results for calibration and
prediction sets showed that LS-SVM models outperformed PLS
models (Tables 1 and 3). Figure 4 shows the predicted vs
reference charts. The solid line is the regression line corre-
sponding to the correlation between the prediction and the
reference values.

SW-LS-SVM Models. ICA was applied for the selection of
SWs, which could reflect the main features of the raw absor-
bance spectra. FastICA was used to the preprocessed spectra
data, and the main absorbance peaks and valleys were indicated
by the spectra of ICs. The SWs were selected by the weights
of the first four ICs, whose wavelengths with the highest weights
of each IC were selected as the SWs. Four SWs were selected
corresponding to four ICs. They were 756, 895, 1140, and 2980
cm-1. To evaluate the performance of SWs, they were applied
as the input data matrix to develop the SW-LS-SVM models.
The prediction results for calibration and prediction sets are
shown in Table 4, and the r, RMSEP, and bias were 0.996,
80.260, and 5.172 × 10-4, respectively. Figure 5 shows the
predicted vs reference charts. The SW-LS-SVM models achieved
a better performance as compared to the best LV-LS-SVM
models in both calibration and prediction sets. Wavelengths at
756 cm-1 were close to the absorbance peaks, 750 cm-1 due
to the water bands νL. The wavelength at 1140 cm-1 was close
to the amide bands III around 1200–1280 cm-1, and phosphate
groups covalently bind to casein proteins around 1060–1100
cm-1. Therefore, the selection of SWs was suitable for such a
situation in the present study, and the effectiveness of SWs was
also validated. The SWs represented most of the features of
the original spectra and could replace the whole wavelength
region to predict different radiation doses of rice. Furthermore,
the SWs might be important for the development of portable
instruments and online monitoring for commercial applications
of different radiated doses of rice.

Many factors affect the precision and reliability of calibration
and prediction, such as sample preparation, accuracy of the
reference data, etc. The differences in rice sample preparations
may influence the results, where the rice sample was milled to
flour (28). Delwiche et al. used milled whole grain samples and
showed that flour spectra were superior to those whole
ones (28, 29). Shu et al. also reported that the milled rice flour
was superior to brown rice flour in calibration for alkali
spreading value (30). In addition, the grain sizes of the milled
rice still vary with different rice genotypes, so all flours pass
through a fixed mesh sieve, and in homogeneous grain, size
may result in better calibration performance.

The prediction of different radiated doses of rice was
successfully performed based on infrared spectroscopy and
chemometric methods of PLS and LS-SVM models. Savitzky-

Golay smoothing and MSC were used as preprocessing methods.
The PLS model with the value of r, RMSEP, and bias in
prediction set, 0.978, 114.902, and -6.032e-03, respectively,
was better in the MIR region than the NIR region. The numbers
of LVs of LS-SVM were selected by the PLS from the MIR
region, and the optimal LS-SVM model was achieved with six
LVs; the r, RMSEP, and bias in prediction set were 0.989,
95.763, and -3.621 × 10-3, respectively, which outperformed
PLS model. ICA was executed to select several SWs based on
loading weights, and the optimal LS-SVM model was achieved
with SWs (756, 895, 1140, and 2980 cm-1) selected by ICA
and had better performance than PLS and LV-LS-SVM with
the parameters of r, RMSEP, and bias in the prediction set equal
to 0.996, 80.260, and 5.172 × 10-4, respectively. The overall
results indicted that the ICA was a powerful way for the
selection of SWs, and infrared spectroscopy combined with LS-
SVM models had powerful capability to predict the radiation
dose of rice. Further optimization and interpretation of the SWs
selection method will be needed to improve the calibration
generalization and stability for practical applications.
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